

Low Carbon Fuel Research @NRC

Shouvik Dev

Outline

Introduction

Characterization and Utilization of LCFs

Hydrothermal Liquefaction

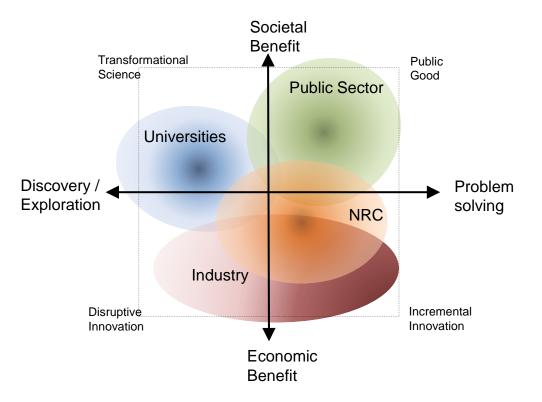
Hydrothermal Gasification

LCA and TEA

Gas Fermentation

Bioelectrochemical Systems

Conclusions


Introduction

The NRC - What We Do

WE ADVANCE SCIENTIFIC AND TECHNICAL KNOWLEDGE WE SUPPORT GOVERNMENT POLICY OBJECTIVES

WE SUPPORT BUSINESS INNOVATION

Positioning the NRC in Canada's Innovation Landscape

Clean Energy Innovation Research Centre

Energy, Mining and Environment

Clean Energy Innovation (as of April 01, 2024)

Vision: To accelerate Canada's transition to a thriving net-zero economy, built on clean energy and decarbonized industries

Mission: To catalyze Canadian innovation for a sustainable future by leveraging our diverse scientific capabilities, cutting-edge technologies and strategic partnerships to pioneer solutions for net-zero energy, critical minerals, advanced materials, and industrial decarbonization

Advanced Clean Energy (ACE) Program

- Over 65 projects with partners from industry, academia and government
- Focus on mid to high TRL clean energy technologies that can be moved into multiple sectors
- Designed to support priorities of the Government of Canada to meet 2050 targets and fill R&D gaps for industry

Supporting the emerging battery supply chain Fuel switching using clean fuels produced from waste

Supporting the production and distribution of fossil-free hydrogen Validation and integration of renewables for grid resiliency

ACE Program Pillar 2 – Low Carbon Fuels

Enabling fuel switching by using **negative value waste streams and feedstocks** for the production of low carbon fuels, and their efficient utilization to reduce net greenhouse gas emissions

		Materials		Components		Devices	>	System Integration
ConversionBiochemicalThermochemical	• •	Waste feedstock analysis Reactor materials compatibility Catalysts	•	Kinetics analysis Phase conversion optimization	•	Bioreactor design Thermo- chemical reactor design	•	Combined bio and thermo processes Decision making tools (LCA/TEA)
 Utilization Reciprocating engines Turbine engines 	• •	Fuel properties Material compatibility After treatment materials	•	Nozzles and fuel injectors After-treatment design	•	Combustion strategies Emission reduction strategies	•	Technology evaluations Fleet conversion Performance evaluation

Advanced Clean Energy Program

End Use collaborations

Characterization and Utilization of LCFs

Characterizing and Utilizing LCFs

Pls: Engines – Shouvik Dev & Hongsheng Guo / Turbines – Sean Yun

Reciprocating engines (CEI) and Turbines (Aerospace RC)

Advanced strategies for combustion of renewable fuels/blends

- Efficiency optimization
- Emission reduction

Emission analysis

- CO₂, CO, HC, CH₄, NH₃, NO_x stationary and mobile
- · Particulate matter and particulate number measurement
- Online multi-gas analyzer for regulated and unregulated emissions

Fuel Characterization

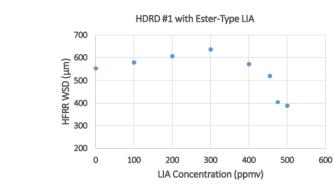
Viscosity, density, lubricity, turbidity, cetane number, elemental analysis

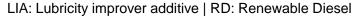
Characterizing and Utilizing LCFs @NRC

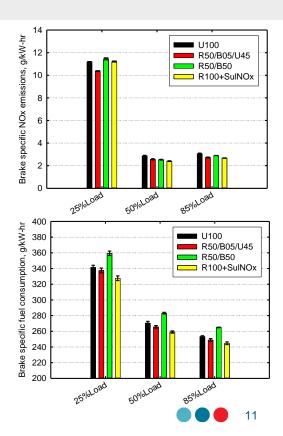
PIs: Engines – Shouvik Dev & Hongsheng Guo / Turbines – Sean Yun

Fuel	T (°C) Temp. Set Point		Nu (mm^2/s) Kin. Viscosity	Rho (g/cm^3) Density
RD	+10	5.5667	6.9606	0.7998
RD	0	7.7721	9.6358	0.8066
RD	-8	10.601	13.050	0.8123
RD	-10	11.500	14.137	0.8135
Arctic Diesel	+40	1.3544	1.6801	0.8062
Arctic Diesel	0	3.1690	3.7948	0.8351
Arctic Diesel	-30	9.0394	10.552	0.8566

•

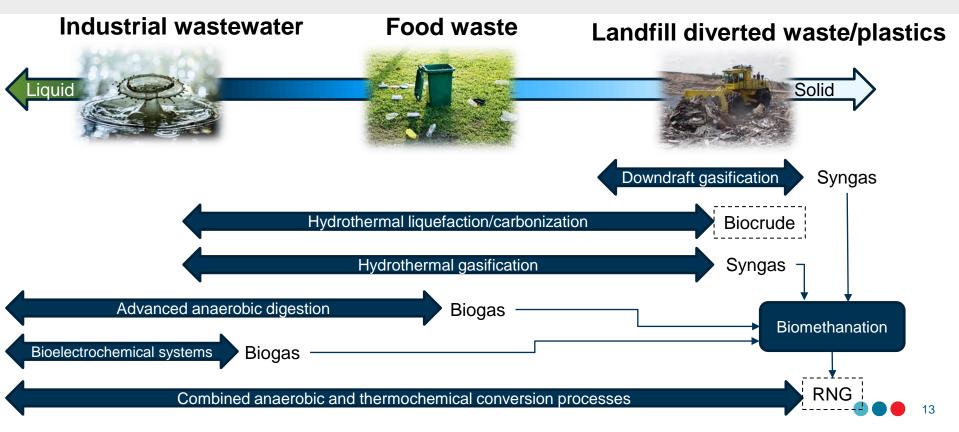

HDRD #1 with Monoacid-Type LIA

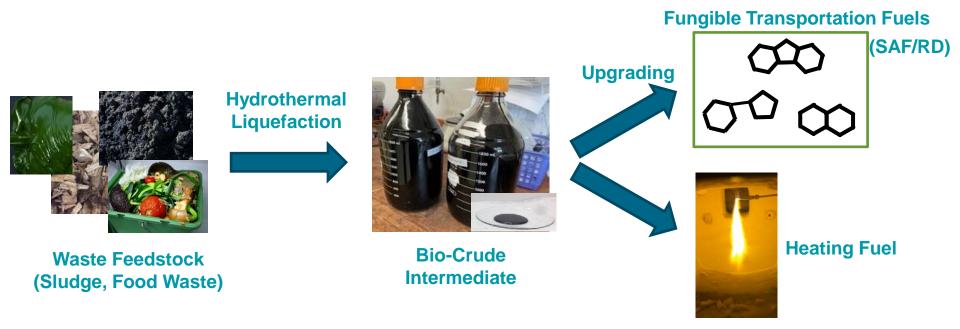

LIA Concentration (ppmv)


•

200 –

HFRR WSD (µm)




Conversion Processes for LCF Production

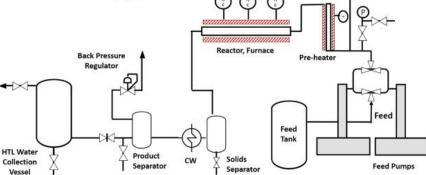
Creating Low Carbon Fuels from Waste

Thermochemical Processes Hydrothermal Liquefaction

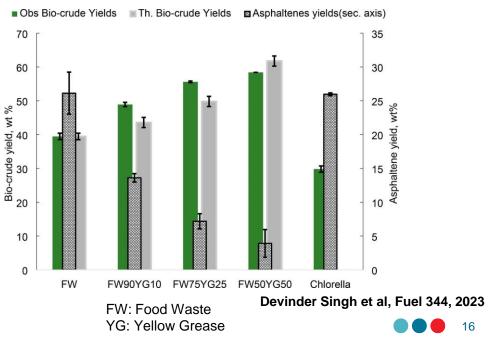
Hydrothermal Liquefaction PI: Devinder Singh

Characterization of produced Bio-crude

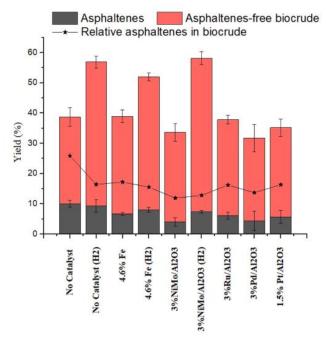
Gas chromatography/mass spectrometry, CHNS analysis, Nuclear magnetic resonance, thermal gravimetric analysis


15

Hydrothermal Liquefaction


PI: Devinder Singh

HTL Pilot Facility (5 kg/hr Continuous)


Improving Biocrude Yield with Yellow Grease

Hydrothermal Liquefaction

PI: Devinder Singh

Catalyst Development for Improving Yield

Fuel 324 (2022) 124452 Contents lists available at ScienceDirect Fuel journal homepage: www.elsevier.com/locate/fuel

Catalytic hydrothermal liquefaction of food waste: Influence of catalysts on bio-crude yield, asphaltenes, and pentane soluble fractions

Sayed Ahmed Ebrahim^a, Gilles Robertson^b, Xin Jiang^b, Elena A. Baranova^a, Devinder Singh^{b,*}

^a Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa ON K1N 6NS, Canada

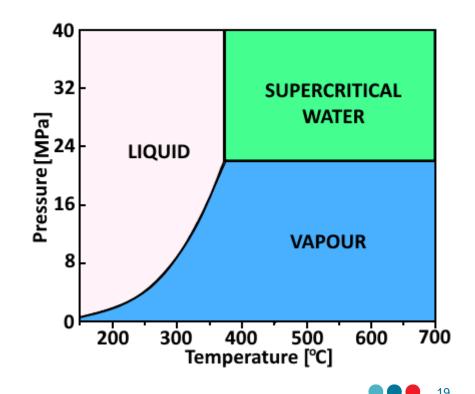
^b Energy, Mining, and Environment Research Centre, National Research Council of Canada, Ottawa ON K1A 0R6, Canada

Fuel 344 (2023) 128066

Full Length Article

Improving yields, compatibility and tailoring the properties of hydrothermal liquefaction bio-crude using yellow grease

Devinder Singh^{*}, Xin Jiang, Mladen Jankovic, Floyd Toll


Energy, Mining, and Environment Research Centre, National Research Council of Canada, Ottawa ON K1A OR6, Canada

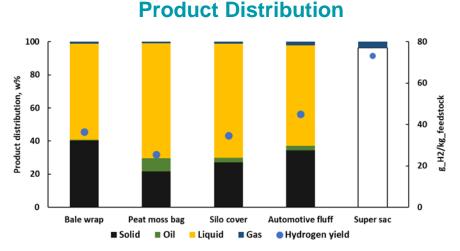
Thermochemical Processes Hydrothermal Gasification

Hydrothermal Gasification

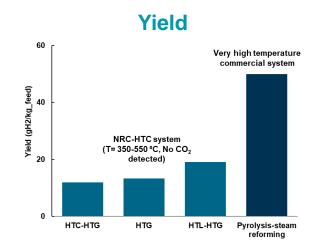
Pls: James Butler, Samira Lotfi

- Above the critical point, water is a very power solvent/oxidant
 - Organic molecules are broken down into base components to recombine as gases
- Suitable for high moisture and difficult to breakdown feedstock
- Does not require drying of high moisture feeds
 like conventional gasification
- Much smaller footprint and shorter residence time compared to anaerobic digestion
- Large feedstock flexibility: biomass, plastics, sewage sludge, food waste, etc.

Hydrothermal Gasification


Pls: James Butler, Samira Lotfi

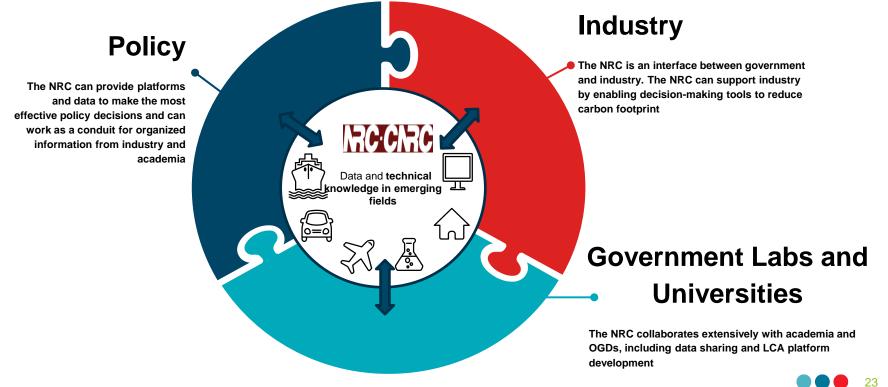
Highly Heterogeneous Plastics Waste


Automotive fluff (AF) NRC's Lab Scale Dual Hydrothermal Conversion (DHC) System - 1 mL/min feed - Two reactors in series • First – Solid decomposition pre-treatment Gaseous H₂ Washing / Second – Gasification of the liquid product ٠ (>50% v/v) Water Addition Feed stream eparator Product Liquid Ground Solid carbon

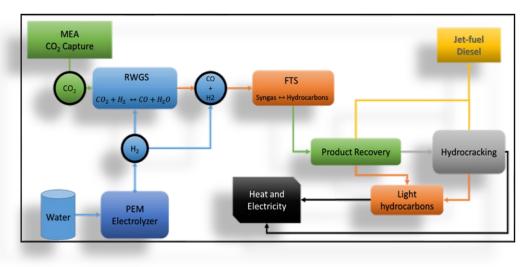
Hydrothermal Gasification

Pls: James Butler, Samira Lotfi

Bench scale results Scale-up to DHC System



Less extreme conditions CO₂ captured in-situ


HTC: Hydrothermal carbonization HTL: Hydrothermal liquefaction HTG: Hydrothermal gasification

Thermochemical Processes LCA and TEA

Lifecycle Assessment and Techno-Economic Analysis Integrated Platform

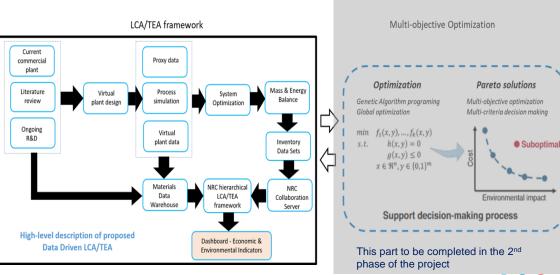
CO₂ to Jet Fuel Technology Platform PI: Jalil Shadbahr

- Evaluates the impact of Fischer-Tropsch (FT) catalyst improvement on FT products
- Calculates the cost reduction per avoided CO₂ applying the Levelized Carbon Cost Abatement (LCCA) tool and the technology learning curves (TLC) approach on the overall performance of the CO₂ to jet-fuel (CtJ) platform
- Integrated TLC-LCCA tool provides a perspective toward implementing CCU technologies such as CtJ platform and their potential to decarbonize the transportation sector.

Integrated LCA/TEA Platform for Carbon Waste to Energy Conversion with CCS (WECCS) Pl: Jianjun Yang

Objectives

- Develop an integrated LCA/TEA platform including a data hub for assessing the cost and net emissions reduction clean fuel technologies, using a transparent science based methodology supported by harmonized datasets;
- · Build a data hub integrating "qualified" datasets from different sources to enable timely decision making
- Assess the economic/environmental viability of carbon waste to energy conversion, and identify optimal operating conditions of CCS regarding the cost and net emissions reduction of the WECCS processes.

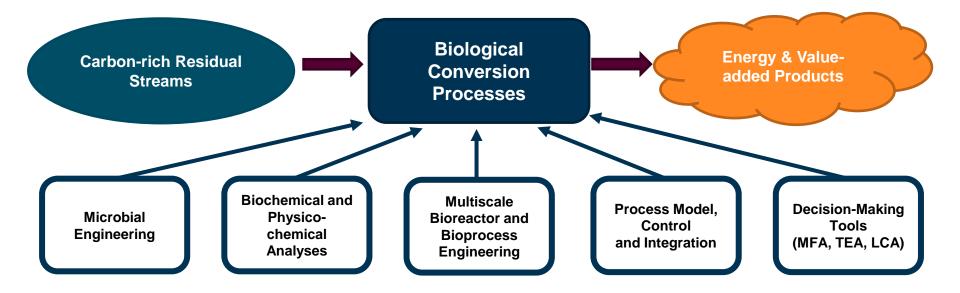

Achievements

- Application of the framework for case study: waste-to-H₂ with hydrothermal treatment process
- Designed scaled-up process PFD
- Developed specific TEA tool for LCOH
- Built a data hub by integrating the best available experimental data, supplemented with process simulation to obtain mass and energy balance data
- Sensitivity analysis to understand the impacts of key parameters on LCOH and GHG emissions

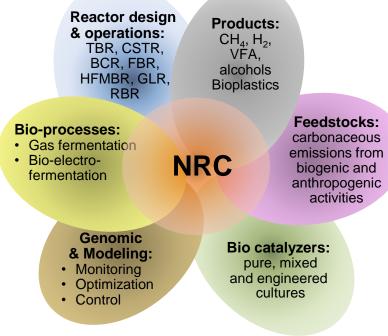
Impact

 This LCA/TEA framework will help R&D groups to identify hotspots and technology gaps to meet demands of low-carbon and sustainable solutions.

LCOH: levelized cost of hydrogen GHG: greenhouse gases PFD: process flow diagram CCS: carbon capture and storage



NATIONAL RESEARCH COUNCIL CANADA


Biochemical Processes

Next-generation Bioprocesses to support Canada's Clean Transition

Scope rationale NRC unique position

TB: tubing bomb; CST: continuous stirred tank; BC: bubble column; FB: fluidized bed; HFMB: hollow fiber membrane bio; GL: glass-lined; RB: rotating bed

National Research Conseil national de recherches Canada

We envision great opportunities for the future of ...

Integration of AD and thermochemical processing

 \leftrightarrow pressure for zero waste plan adoption, with highest methane yield possible

Bio-electrochemical system

↔ needs for energy-neutral or -positive wastewater treatment in remote locations and CCUS processes

• C1-gas fermentation (syngas, iron and steel industrial fumes, CO₂, etc.)

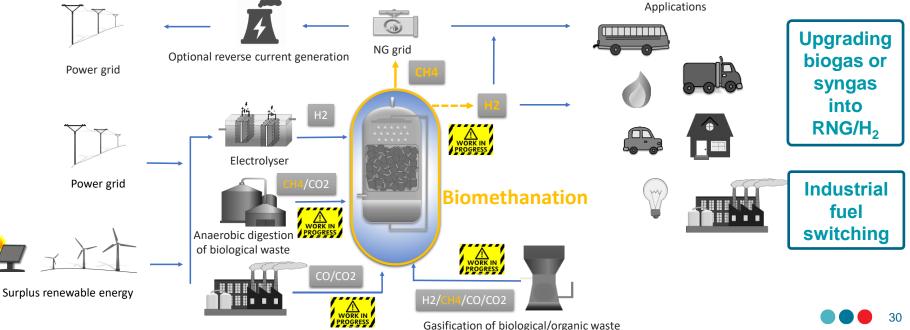
 \leftrightarrow RNG, SNG, H₂ & bio-based chemicals: directly from flue gas, or indirectly from biomass (low-cost syngas platform, compared to the expensive sugar-based platform, as a carbon source)

CO₂ biomethanation

 \leftrightarrow power-to-gas conversion: effective way to store stranded electricity, with CO_2 capture

AD diagnostic platform

 \leftrightarrow anticipated high demand for rapid diagnosis of problematic large-scale plants (microbial community composition & performance)


Biochemical Processes Gas Fermentation

Gas Fermentation – Overview

Pls: Ruxandra Cimpoia, Charles-David Dubé, Guillaume Bruant

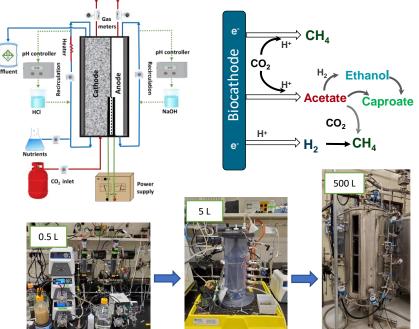
Biological methanation & Power-2-Gas (P2G) \rightarrow Conversion of gaseous streams containing CO/CO₂ into CH₄

Biological Water Gas Shift (WGS) \rightarrow Conversion of gaseous streams containing CO into H₂

Biochemical Processes Bioelectrochemical Systems

Bioelectrochemical Systems – Overview

Pls: Boris Tartakovsky, Emmanuel Nwanebu, Guillaume Bruant


Microbial electrolysis cell (MEC) applications:

- **BEAST** (BioElectrochemical Anaerobic Sewage Treatment):
- \rightarrow Energy recovery and sewage treatment with a patented heat-recovery system by micro-aeration.
- **BEAD** (Anaerobic digestion-MEC)
- → Enhanced biomethane production from food waste by adding electrodes in an anaerobic digester (e.g. Upflow anaerobic sludge blanket [UASB] digester).

Microbial Electrosynthesis (MES)

Production of carboxylic acids and methane from carbon dioxide.

Conclusions

- Waste-to-energy technologies can convert negative value waste feedstock into useful fuels and intermediates which can be either used on their own or further upgraded to fungible fuels – biocrude, hydrogen, syngas, renewable natural gas
- Characterizing the waste is the first step in determining a suitable conversion process many parameters such as composition, moisture content, homogeneity, and impurities have to be taken into consideration
- Next generation conversion processes can adapt to changes in feedstock to maximize the yield of the fuel
- A gas fermentation process such as biological methanation can capture CO₂ as well and convert to methane and hydrogen
- NRC also has engine and turbine research facilities and fuel characterization facilities for evaluating LCFs

Thank you

Shouvik Dev • Program Technical Lead • Clean Energy Innovation

Shouvik.Dev@nrc-cnrc.gc.ca

nrc.canada.ca • info@nrc-cnrc.gc.ca