

Biofuels R&D at CanmetENERGY Devon

Anton Alvarez-Majmutov, Rafal Gieleciak, and Jinwen Chen CanmetENERGY Devon, Natural Resources Canada

CFA Innovation Forum, October 29, 2024

NRCan's Canmet Labs

CanmetENERGY Devon's Biofuels R&D Program

- Focused on biofuels from advanced feedstocks
 - Industry wastes forestry, agriculture, food processing
 - Municipal wastes organic waste, sewage sludge, cooking oils
 - Algal biomass
- 3 major multi-year projects with a combined budget of ~\$2.3M per year from federal R&D programs
 - Program of Energy Research and Development (PERD)
 - Forest Innovation Program (FIP)
- Broad collaboration network
 - Bioenergy companies and fuel producers
 - Universities in Canada, US, and other countries
 - Government organizations and labs (international, national, provincial, and municipal)

Focus Area 1: Biofuel production

- Developing biocrude upgrading solutions
- Piloting biorefining and <u>co-processing</u> technologies
- Supporting industry in technology development, demonstration, and scaling up

Ressources naturelles

Canada

Natural Resources

Canada

0.5 barrel (80 L)/day hydroprocessing unit with 2 reactors and on-line distillation

Biocrude co-processing

Goal: investigate the co-processing of pre-treated biocrude in the hydrocracking process

Biocrude co-processing – experimental plan

Feed materials

- Petroleum feed: VGO (343-525°C) from Canadian bitumen
- Biogenic feed: HTL biocrude from a mix of spruce and pine wood

Biocrude co-processing – feed properties

	(1)		2		
Property	HTL biocrude	D-biocrude	HTL biocrude	H-biocrude	VGO
distillation yield, wt%	-	63.4	-	-	-
density at 15.6°C, g/mL	1.0536	0.9925	1.0880	0.9910	0.9759
carbon, wt%	80.0	79.5	79.7	84.8	84.8
hydrogen, wt%	9.4	10.0	8.6	10.5	11.1
sulfur, wt%	<0.1	<0.1	0.1	<0.1	3.6
nitrogen, wt%	<0.1	<0.1	0.3	0.1	0.3
oxygen, wt%	10.5	10.6	11.3	3.6	0.5
Fractional composition					
distillate (<343°C), wt%	27.7	47.1	17.1	42.8	4.5
vacuum gas oil (343-525°C), wt%	34.7	49.6	31.9	28.7	86.5
vacuum residue (>525°C), wt%	37.6	2.7	51.0	28.5	9.0

Canada

Biocrude co-processing – hydrocracking stage

7.5% H-biocrude bl. hydrocracking activity 2 (H-biocrude 3.6 wt% oxygen)

Pressure = 1,600 psi; LHSV = $1.5 h^{-1}$; H₂/oil ratio = 800 NL/L

ada

Biocrude co-processing – biogenic carbon analysis

Biogenic carbon content per ASTM D6866

Focus Area 2: Catalysis

- Catalyst synthesis for biorefining applications
 - Biocrude deoxygenation and denitrogenation
 - <u>Isomerization</u> and hydrocracking
- Catalyst testing and characterization

250 mL batch reactor unit for catalyst evaluation studies

Canada

Natural Resources Canada

Ressources naturelles

Isomerization of n-paraffins

Goal: develop isomerization technology to upgrade a lipid-derived biofuel product into biojet

- Biofuel rich in n-paraffins and with a poor freezing point
- Synthesized, tested, and scaled-up isomerization catalysts for converting n-paraffins into isoparaffins
 - Several catalysts screened at different conditions in a batch reactor
 - ~2,700 h of continuous pilot testing
 - Product quality testing against standard specifications for Jet A and Jet A-1 grade aviation fuels

Focus Area 3: Chemistry

- Chemical analysis of biocrudes and biofuel products
- Elucidation of reaction pathways in biorefining processes
- Biogenic carbon content determination in co-processed fuels

Algae biocrude analysis

Goal: understand the nature of the oxygen and nitrogen compounds in the biocrude

- Biocrude produced by hydrothermal liquefaction of algal biomass
 - 8.4 wt% oxygen
 - 3.8 wt% nitrogen
- Long-chain fatty acids, amides, and pyrroles were prevalent in the algae biocrude
- Amides and pyrroles were easily removed from the biocrude during its co-processing with gas oil

GC×GC-TOFMS analysis of the biocrude

Canada

dà

Co-processed fuel composition analysis

Goal: understand differences in hydrocarbon composition of co-processed fuels

Biogenic carbon analysis

Goal: measure the biogenic carbon content in co-processed products

- Hidex 600 OX oxidizer and 300 SL super low-level liquid scintillation counter (LSC)
 - commissioned in October 2024
- The Hidex 600 OX is ideal for a variety of solid samples
- Determination of biogenic carbon content in liquid fuels is based on radiocarbon dating using the LSC

Focus Area 4: Modeling

- Molecular modeling of biocrudes and their reaction chemistry
- Process modeling and simulation of biorefining units
 - Biocrude upgrading
 - Co-processing
 - Biorefining
- Techno-economic and life cycle assessment of biofuel pathways

lanada

Acknowledgement

- CanmetENERGY Devon's Technical Services Team and Standard Analytical Lab
- Government of Canada's Office of Energy Research and Development (OERD) and the Canadian Forest Service (CFS)
- Collaborators and partners

Canada

Anton Alvarez-Majmutov, Ph.D.

Team Lead, Biofuels and Process Modeling CanmetENERGY Devon, Natural Resources Canada Email: anton.alvarez-majmutov@nrcan-rncan.gc.ca Telephone: +1 587-334-6268

Jinwen Chen, Ph.D., FCAE

Director, Downstream and Renewables CanmetENERGY Devon, Natural Resources Canada Email: jinwen.chen@nrca-rncan.gc.ca Telephone: +1 780 884 9337

anada

Canada

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2024

